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A HARNACK TYPE INEQUALITY FOR CERTAIN
COMPLEX MONGE-AMPERE EQUATIONS

GANG TIAN

0. Introduction

In finding a Kahler-Einstein metric on a compact Kahler manifold (M, g)
with C;(M) > 0, one needs to solve the following complex Monge-Amperé
equations:

*) (wg +80¢)™ = el ~*2u7,

¢ wg+85¢>>0, on M,
where wy is the Kéhler form associated with the metric g, w7 = wyA---Awg is
the volume form, 0 < ¢ < 1,88 = Ric(g)—wy, [y, e/ w? = [, w} = Voly(M),
and n = dim M.

While the prior estimates of higher derivatives have been obtained by Yau
[8] for the solutions of (*), more than ten years ago, little is known about
the supreme norms of the solutions of (*);. In (7], the author proved that
— infps ¢ is bounded from above by nsup,, ® + C for any solution ¢ of (*)q,
where C is a constant independent of ¢. Actually, it is implied in the proof
there that C depends only on ¢. By a completely different method, Siu also
proved a slightly weaker version of the above inequality [6], i.e., for any € > 0,
there is a constant C,, depending on the metric g, ¢ and ¢, such that for any
solution ¢ of (+); —infar ¢ < (n + €)supy, ¢ + Ce. In this note, we develop
the idea in the proof of the above Harnack type inequality in [7] and prove
the following theorem.

Theorem 1. Let (M,g) be a compact Kahler manifold with C1(M) >
0, n = dimM. Then for any ¢ € C*(M,R) with wy, + 89y > 0 and
fM ef_"/’w;‘ = Volg(M), the solution ¢ of (), satisfies the Harnack type
inequality

O ~Garg [, ¢~ ¥)es + 000 < nsup(s ).
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Furthermore, there is a constant C(t) depending only on t such that for t > 0,
the solution ¢ of (%), satisfies

(0.2) , —inf(¢ — ¥) < nsup(¢ - ¥) + C(t).

An interesting and surprising corollary of Theorem 1 is the following.

Corollary 1. There i3 a untversal constant C such that for any Kdhler-
Einstein manifold (M, g) with C,(M) > 0, i.e., Ric(g) = wy, and for any C?
function ¥ with wg+83¢ > 0, [, e"Ywl = Volg(M), the following inequality
holds:

(0.3) supy < —ninfy + C.
M M

Note that the constant C is computable and the inequality (0.3) is shér_p;
for example, one can consider the case (M, g) = (CP™, Fubini-Study metric)
to see the sharpness of (0.3).

1. The proof of Theorem 1

First, we assume that ¢ € C%(M, R), wy + 83% > 0. Then we can define
a new Kahler metric g such that the associated Kihler form is wg + 881/) Put
f=r+ log(wy /wf) — tp. Then

(L.1) ‘ / efwng e/ =ty = Vol (M)
M M o7
Rewrite (*), in terms of w; and f as follows:

(wg+aa(¢:- V)" —ef Ho—¥)y2,
(wg +08(¢ —¥)) >0, on M.

In 8], in order to show the uniqueness of Kihler-Einstein metrics on a compact
Kaéhler manifold with positive first Chern class, Bando and Mabuchi first prove
the solvability of (¥)y for ¢ < ¢ < 1 under the assumption that (*); has a
solution. We will apply this idea to the following equations in the first part
of our proof. Precisely, we will first prove that the followmg equations are
always solvable for 0 < s < #:

(wy + 080)™ = ef—%'g,
(wg + 859) >0, on M.

As usual, we use the continuity method. Define S = {s € [0,t]](1.3)s is
solvable for s’ € [s,]}. Since (1.2) has a solution ¢, t € S and S is nonempty.
It is sufficient to show that S is both open and closed. For the openness,

(1.2)

(1.3)s
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we should estimate the first eigenvalue of the metric gy associated with the
Kihler form w, + 888 for the solution 6 of (1.3)s.
Lemma 1.1. The first nonzero eigenvalue A1{gy) is greater than s.
Proof. By the well-known Bochner identity (see [1]), it suffices to show
that Ric(gy) is strictly bounded from.below by s.. From (1.3),, we have
Ric(gs) = Ric(§) — B8 + 086

n

= Ric(§) — 98f — ddlog ("’
. g

= Ric(g) — 88 + tdd% + 5050
= (1 = t)wy + (t — 8)wz + 5(wz + 830) > swy, -

) + 180y + 39046

The first variation of (1.3), at 8 is A,u = —su, where A, is the Laplacian of
the metric gg. Lemma 1.1 implies that the linearized operator Ag—sof (1.3)s
is invertible; then the openness follows from Implicit Function Theorem. -

For the closedness of S, by the standard theory of elliptic equations [4] and

Yau’s estimates of higher derivatives for solutions of complex Monge-Amperé
equations of type (1.3)s, it suffices to estimate CP-norms of the solutions of
(1.3),. , ’ . -
Suppose that (1.3), is solvable for s € (s, t] and 6, is the solution. From
the proof of the openness of S, one can actually conclude that {0s}sc (s, i8
a smooth family in C* (M R), i.e., 8, varies smoothly with s.

Define, as in [1], :

10 = oo /Mﬂs(ws—wawées)"), 16,) = | 1

Lemma 1.2 (1} [2, ). () (n+ 1J(0)/n <1(0:) < (n-+DJ(6),

(1) d(I(85) — J(85))/ds = —(Volg(M)) ™" [, 05(As fo)wr,
where 0, = df, Jds'|er=s, 9s s the Kdhler metric assoczated with wy + 290,
and A, s its Laplacian.

As a corollary, we have the following lemma which was observed by Bando
and Mabuchi (2] and the author [7].

Lemma 1.3. I(6,) — J('8,) is monotonically increasing.

Proof. Differentiate (1.3), with respect to s:

(1.4), A b, = —sby — 6.

Substituting (1.4), into the right-hand side of the formula in Lemma 1.2(ii),
we obtain

(19 U0 =16 = oy [ (@ebat ab) b,
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Write 6, in the eigenfunction expansion, i.e.,
. o0

(1'6) 93 = Za,u,’,
1=0

where —Agu; = Au;, 0=l < A1 < Ag---.
By Lemma 1.1., A; > s. Hence,

d
2(1(05) = 7 0.)) = vO1 /(me — s)u )(Za,A u,)

=0

2 ay.12
= Vei( )Z|a,|/ i ~ 9)Ailui?w?, >0,

and the lemma is proved.
In the following, we always denote by C the constant independent of s.

Lemma 1.4. There is a constant C > 0 such that for any solution 8, of

(1.3)s, 0 < 8 < t, we have supy, 05| < C.

Proof. 1In (7], we define a holomorphic invariant a(M) on the compact
Kahler manifold M with C; (M) > 0. For any A < a(M), there is a constant

C>, which may depend on the metric g, such that

(1.7) /M M u=3uP ¥) q < Oy for u € C*(M, R), wg +00u > 0.

In case s € (0, a(M)/(n + 2)], f,, e~ (nHVs(6s=suPn 6:) gl < C for a con-

stant C. For p > 0,

/ e—p(o,—supM 9,)(ef—59, _ 1) dVg
M
— —p(8s—sup,, 6,) w w?
[ e (w5, —4)
— /M e—P(Ga—supM 93)35(98 _ Skllp 93)((‘)3,—1 + w;’—2 A wj 44 wg—l)
= 3/ a(e—p(ﬂs—supu 03)/2) A 5(e—p(9a—supu 95)/2)
Awp  + Wi 2 Awg + -+ WP
> é/ Ie(e—p(ﬂ,—supM o’)/2)|2dV§
PIm

i (n=1)/n
> = (/ e—np(ﬁ,—supM 0,)/(n—1) dVg)
TP \Um

_ 1

e—P(oa—S“PM 6,) dVg,
b Im
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where ¢ is the Sobolev constant, depending only on (M, g). Using Hélder
inequality on the left-handed side of the above, we have

6 0 1 (n=1)/n
( /Me—np( s=5Upy 00)/(n=1) dVa)

n/ (k1)
(1«8) < Cp (/M e—("+1)P(9s—SupM 8,)/n dVa)

1/n+1
(oo™
M

Now sup,, 0, 2 0, since

Vo) = [ = [ wp= [ ez e [ day,
M M M M
= &= 9%uPm % Vol (M),

Then

n+l n+1
(/ e—(-n+1)9,, dVg) < (/ e_("+1)3(9s—5“PM 0s) dVg)
(1.9) M M

S C‘n,-'l-l‘
Substituting (1.9) into (1.8), we have
(1.10) le—(o,—supM 0,)| np)(n-1) < Cl/Ppl/P |e—(0,—supM Oa)l (n+1)p/n-

Put po = ns and pr+1 = pmn?/(n? —1). Then

Pm+1

? 6 1))(1/ n—1 (n/(n—1))/(1/Pm+1)
|C_( s—BUp s a)|pm+1 S C(‘n/(n" Pm+1) ( ~ )

e te=somas 00|
Pm

< (Cpp) Y/ |e—(0s—supM 0")|pm

1/ns o~ (nP =1\ —(8s—sup ), 8,)
<C Z = Ie IPO

m=0

1 & /n2-1\" I n? 1
P 771’221( n? ) <m Ogn"’—l-'-og(ns))
<C,

and it follows that

~inf(6 — supd,) = log ( lim [e=®-=Pu )], ) <,

i.e., for s € (0,a(M)/(n +2)), supy |0s| < C.
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In the case s > a(M)/(n + 2), Ric(gs) > s > a(M)/(n + 2). Then by
Bochner’s identity and results of Croke [3] and P. Li [5], we have both the
Sobolev inequality and the Poincaré inequality with their constants uniformly
bounded on (M, gs). Since —A,0; > —n, the standard Moser iteration implies
that

(1.11) . —ilr‘zlfﬂs < C/m(—ﬁs)w;‘e +Cy

(also see [7] for details).
On the other hand, by Green’s formula on (M, g) it follows that

(1.12) supf, < / 05wy + C.
M M v

By Lemmas 1.3 and 1.2(),
(1.13)  I(8s) < (n+1)(I(85) — J(05)) < (n+ 1)({(0:) — J(6,)) < C.

Since fi5, 503 056’ ~*% dVj and [i,  qy(~0s)dV; are obviously bounded by a
constant C independent of s, the Lemma follows from (1.11)-(1.13) and the
definition of I(8;). :
Now the closeness of S follows from the above lemma. Hence, (1.3); is
solvable for 0 < s < t. Then there is a smooth family of {8, }0<3 such that
= ¢ — 1. By Lemma 1. 2(11) and (1.4),, we have

1(1(03)—J(és))= o [, 0o, =05,

= - VOI@( )d ~(/M03w95> VOlg /9w

Differentiating Volz (M) = f,, ef =505 dv; gives

(1.14) / (—sfs — 05)el %% dV; = 0.
M _

Hence,

d 1 d o0, .\
FUO)=10)) = o (o [ one= av;)

ie.,

2 (s(1(8:) = J(6))) ~ (1(6) ~ (05))

(1.15) i
= — S —_ f 80,
as <Volg(M) [, ‘”’)
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Note that

1
10.) - 7(6) > ~ +1I(es) = TV v°1 / 6 (

%(n+1 Vol / 065 1905

AW+ w T Awg, + o w0,
Then it follows from (1.15) -and Lemma 1.2(i) that

18 Gron [ (g, <100 - 360 < 51600

n n n
= ST "
ie.,
1 n n
—W/ (¢ — ¥)(wg + 03)" —Vlg(M)/ (¢ ~¥)wj
snszp(tb ¥),

which is just (0.1). The inequality (0.2) follows from Moser’s iteration and
the fact that Ric(g;) > ¢ > 0. Hence Theorem 1 is proved. (We refer the
reader to the proof of Lemma 1.4 for details.)

2. The proof of Corollary 1

From (0.2) in Theorem 1, for any 3 € C*(M, R) with w, + 384 > 0 and
Jas € ¥wh = Volg(M), we have

(2.1) — inf(¢ — ¥) < nsup(¢ - ) + C(1),
M

where ¢ is the solution of (*); and C(1) is a universal constant. Note that
here f = 0, since g has been a Kihler-Einstein metric. This implies that ¢ =0
is a solution of (¥);. For ¢ =0, (2.1) becomes

—inf(-y) < nsx[p(—i/)) +C(1).

Because infa(—1) = —supy,(¥) and supp,(—%) = —infps ¢, Corollary 1 is
proved.
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