A HARNACK TYPE INEQUALITY FOR CERTAIN COMPLEX MONGE-AMPERÉ EQUATIONS

GANG TIAN

0. Introduction

In finding a Kähler-Einstein metric on a compact Kähler manifold (M, g) with $C_1(M) > 0$, one needs to solve the following complex Monge-Amperé equations:

$$(*)_{t} \qquad (\omega_{g} + \partial \bar{\partial} \phi)^{n} = e^{f - t\phi} \omega_{g}^{n},$$
$$\omega_{g} + \partial \bar{\partial} \phi > 0, \qquad \text{on } M,$$

where ω_g is the Kähler form associated with the metric g, $\omega_g^n = \omega_g \wedge \cdots \wedge \omega_g$ is the volume form, $0 \le t \le 1$, $\partial \bar{\partial} f = \text{Ric}(g) - \omega_g$, $\int_M e^f \omega_g^n = \int_M \omega_g^n = \text{Vol}_g(M)$, and $n = \dim M$.

While the prior estimates of higher derivatives have been obtained by Yau [8] for the solutions of $(*)_t$ more than ten years ago, little is known about the supreme norms of the solutions of $(*)_t$. In [7], the author proved that $-\inf_M \phi$ is bounded from above by $n\sup_M \Phi + C$ for any solution ϕ of $(*)_t$, where C is a constant independent of ϕ . Actually, it is implied in the proof there that C depends only on t. By a completely different method, Siu also proved a slightly weaker version of the above inequality [6], i.e., for any $\varepsilon > 0$, there is a constant C_{ε} , depending on the metric g, t and ε , such that for any solution ϕ of $(*)_t - \inf_M \phi \leq (n + \varepsilon) \sup_M \phi + C_{\varepsilon}$. In this note, we develop the idea in the proof of the above Harnack type inequality in [7] and prove the following theorem.

Theorem 1. Let (M,g) be a compact Kähler manifold with $C_1(M) > 0$, $n = \dim M$. Then for any $\psi \in C^2(M,R)$ with $\omega_g + \partial \bar{\partial} \psi \geq 0$ and $\int_M e^{f-t\psi} \omega_g^n = \operatorname{Vol}_g(M)$, the solution ϕ of $(*)_t$ satisfies the Harnack type inequality

$$(0.1) -\frac{1}{\operatorname{Vol}_{g}(M)} \int_{M} (\phi - \psi) (\omega_{g} + \partial \bar{\partial} \phi)^{n} \leq n \sup_{M} (\phi - \psi).$$

Received October 12, 1987.

Furthermore, there is a constant C(t) depending only on t such that for t > 0, the solution ϕ of $(*)_t$ satisfies

$$(0.2) -\inf_{M}(\phi - \psi) \le n\sup_{M}(\phi - \psi) + C(t).$$

An interesting and surprising corollary of Theorem 1 is the following.

Corollary 1. There is a universal constant C such that for any Kähler-Einstein manifold (M,g) with $C_1(M)>0$, i.e., $\mathrm{Ric}(g)=\omega_g$, and for any C^2 function ψ with $\omega_g+\partial\bar\partial\psi\geq 0$, $\int_M e^{-\psi}\omega_g^n=\mathrm{Vol}_g(M)$, the following inequality holds:

$$\sup_{M} \psi \le -n \inf_{M} \psi + C.$$

Note that the constant C is computable and the inequality (0.3) is sharp; for example, one can consider the case $(M,g) = (CP^n, Fubini-Study metric)$ to see the sharpness of (0.3).

1. The proof of Theorem 1

First, we assume that $\psi \in C^{\infty}(M,R)$, $\omega_g + \partial \bar{\partial} \psi > 0$. Then we can define a new Kähler metric \tilde{g} such that the associated Kähler form is $\omega_g + \partial \bar{\partial} \psi$. Put $\tilde{f} = f + \log(\omega_g^n/\omega_{\tilde{g}}^n) - t\psi$. Then

(1.1)
$$\int_{M} e^{\tilde{f}} \omega_{\tilde{g}}^{n} = \int_{M} e^{f - t\psi} \omega_{g}^{n} = \operatorname{Vol}_{g}(M).$$

Rewrite $(*)_t$ in terms of $\omega_{\tilde{g}}$ and \tilde{f} as follows:

(1.2)
$$(\omega_{\tilde{g}} + \partial \bar{\partial} (\phi - \psi))^n = e^{\tilde{f} - t(\phi - \psi)} \omega_{\tilde{g}}^n, \\ (\omega_{\tilde{g}} + \partial \bar{\partial} (\phi - \psi)) > 0, \text{ on } M.$$

In [8], in order to show the uniqueness of Kähler-Einstein metrics on a compact Kähler manifold with positive first Chern class, Bando and Mabuchi first prove the solvability of $(*)_{t'}$ for $t' \leq t \leq 1$ under the assumption that $(*)_t$ has a solution. We will apply this idea to the following equations in the first part of our proof. Precisely, we will first prove that the following equations are always solvable for $0 \leq s \leq t$:

$$(1.3)_s \qquad (\omega_{\tilde{g}} + \partial \bar{\partial} \theta)^n = e^{\tilde{f} - s\theta} \omega_{\tilde{g}}^n, (\omega_{\tilde{g}} + \partial \bar{\partial} \theta) > 0, \text{ on } M.$$

As usual, we use the continuity method. Define $S = \{s \in [0,t] | (1.3)_{s'} \text{ is solvable for } s' \in [s,t]\}$. Since (1.2) has a solution ϕ , $t \in S$ and S is nonempty. It is sufficient to show that S is both open and closed. For the openness,

we should estimate the first eigenvalue of the metric g_{θ} associated with the Kähler form $\omega_q + \partial \bar{\partial} \theta$ for the solution θ of $(1.3)_s$.

Lemma 1.1. The first nonzero eigenvalue $\lambda_1(g_\theta)$ is greater than s.

Proof. By the well-known Bochner identity (see [1]), it suffices to show that $Ric(g_{\theta})$ is strictly bounded from below by s. From $(1.3)_s$, we have

$$\begin{aligned} \operatorname{Ric}(g_{\theta}) &= \operatorname{Ric}(\tilde{g}) - \partial \bar{\partial} \tilde{f} + s \partial \bar{\partial} \theta \\ &= \operatorname{Ric}(\tilde{g}) - \partial \partial f - \partial \partial \log \left(\frac{\omega_{g}^{n}}{\omega_{\tilde{g}}^{n}} \right) + t \partial \bar{\partial} \psi + s \partial \bar{\partial} \theta \\ &= \operatorname{Ric}(g) - \partial \bar{\partial} f + t \partial \bar{\partial} \psi + s \partial \bar{\partial} \theta \\ &= (1 - t)\omega_{g} + (t - s)\omega_{\tilde{g}} + s(\omega_{\tilde{g}} + \partial \bar{\partial} \theta) > s\omega_{g_{g_{g}}}. \end{aligned}$$

The first variation of $(1.3)_s$ at θ is $\Delta_s u = -su$, where Δ_s is the Laplacian of the metric g_{θ} . Lemma 1.1 implies that the linearized operator $\Delta_s - s$ of $(1.3)_s$ is invertible; then the openness follows from Implicit Function Theorem.

For the closedness of S, by the standard theory of elliptic equations [4] and Yau's estimates of higher derivatives for solutions of complex Monge-Amperé equations of type $(1.3)_s$, it suffices to estimate C^0 -norms of the solutions of $(1.3)_s$.

Suppose that $(1.3)_s$ is solvable for $s \in (s_0, t]$ and θ_s is the solution. From the proof of the openness of S, one can actually conclude that $\{\theta_s\}_{s \in (s_0, t]}$ is a smooth family in $C^{\infty}(M, R)$, i.e., θ_s varies smoothly with s.

Define, as in [1],

$$I(\theta_s) = \frac{1}{\operatorname{Vol}_g(M)} \int_M \theta_s (\omega_{\tilde{g}}^n - (\omega_{\tilde{g}} + \partial \bar{\partial} \theta_s)^n), \qquad J(\theta_s) = \int_0^1 \frac{I(x\theta_s)}{x} \, dx.$$

Lemma 1.2 ([1], [2], [7]). (i)
$$(n+1)J(\theta_s)/n \le I(\theta_s) \le (n+1)J(\theta_s)$$

(ii)
$$d(I(\theta_s) - J(\theta_s))/ds = -(\operatorname{Vol}_g(M))^{-1} \int_M \theta_s(\Delta_s \dot{\theta}_s) \omega_g^n$$
,

where $\dot{\theta}_s = d\theta_{s'}/ds'|_{s'=s}$, a_s is the Kähler metric associated with ω_s

where $\dot{\theta}_s = d\theta_{s'}/ds'|_{s'=s}$, g_s is the Kähler metric associated with $\omega_{\tilde{g}} + \partial \bar{\partial} \theta_s$ and Δ_s is its Laplacian.

As a corollary, we have the following lemma which was observed by Bando and Mabuchi [2] and the author [7].

Lemma 1.3. $I(\theta_s) - J('\theta_s)$ is monotonically increasing.

Proof. Differentiate $(1.3)_s$ with respect to s:

$$(1.4)_s \Delta_s \dot{\theta}_s = -s\dot{\theta}_s - \theta_s.$$

Substituting $(1.4)_s$ into the right-hand side of the formula in Lemma 1.2(ii), we obtain

(1.5)
$$\frac{d}{ds}(I(\theta_s) - J(\theta_s)) = \frac{1}{\operatorname{Vol}_g(M)} \int_M (\Delta_s \dot{\theta}_s + s \dot{\theta}_s) \Delta_s \dot{\theta}_s \omega_{g_s}^n.$$

Write $\dot{\theta}_s$ in the eigenfunction expansion, i.e.,

$$\dot{\theta}_s = \sum_{i=0}^{\infty} a_i u_i,$$

where $-\Delta_s u_i = \lambda_i u_i$, $0 = \lambda_0 < \lambda_1 \le \lambda_2 \cdots$.

By Lemma 1.1., $\lambda_1 > s$. Hence,

$$\frac{d}{ds}(I(\theta_s) - J(\theta_s)) = \frac{1}{\operatorname{Vol}_g(M)} \int_M \left(\sum_{i=0}^\infty a_i (\lambda_i - s) u_i \right) \left(\sum_{j=0}^\infty a_j \lambda_j u_j \right) \omega_{g_s}^n$$

$$= \frac{1}{\operatorname{Vol}_g(M)} \sum_{i=0}^\infty |a_i|^2 \int_M (\lambda_i - s) \lambda_i |u_i|^2 \omega_{g_s}^n \ge 0,$$

and the lemma is proved.

In the following, we always denote by C the constant independent of s.

Lemma 1.4. There is a constant C > 0 such that for any solution θ_s of $(1.3)_s$, $0 < s \le t$, we have $\sup_{M} |\theta_s| \le C$.

Proof. In [7], we define a holomorphic invariant $\alpha(M)$ on the compact Kähler manifold M with $C_1(M) > 0$. For any $\lambda < \alpha(M)$, there is a constant C_{λ} , which may depend on the metric \tilde{g} , such that

$$(1.7) \qquad \int_{M} e^{-\lambda(u-\sup_{M} u)} dV_{\tilde{g}} \leq C_{\lambda} \quad \text{for } u \in C^{2}(M,R), \ \omega_{\tilde{g}} + \partial \bar{\partial} u \geq 0.$$

In case $s \in (0, \alpha(M)/(n+2)]$, $\int_M e^{-(n+1)s(\theta_{\sigma}-\sup_M \theta_{\sigma})} dV_{\tilde{g}} \leq C$ for a constant C. For p > 0,

$$\begin{split} &\int_{M} e^{-p(\theta_{s}-\sup_{M}\theta_{s})} (e^{\tilde{f}-s\theta_{s}}-1) \, dV_{\tilde{g}} \\ &= \int_{M} e^{-p(\theta_{s}-\sup_{M}\theta_{s})} (\omega_{g_{s}}^{n}-\omega_{\tilde{g}}^{n}) \\ &= \int_{M} e^{-p(\theta_{s}-\sup_{M}\theta_{s})} \partial \bar{\partial} (\theta_{s}-\sup_{\tilde{M}}\theta_{s}) (\omega_{g_{s}}^{n-1}+\omega_{g_{s}}^{n-2} \wedge \omega_{\tilde{g}}+\cdots+\omega_{\tilde{g}}^{n-1}) \\ &= \frac{4}{p} \int_{M} \partial (e^{-p(\theta_{s}-\sup_{M}\theta_{s})/2}) \wedge \bar{\partial} (e^{-p(\theta_{s}-\sup_{M}\theta_{s})/2}) \\ &\qquad \qquad \wedge (\omega_{g_{s}}^{n-1}+\omega_{g_{s}}^{n-2} \wedge \omega_{\tilde{g}}+\cdots+\omega_{\tilde{g}}^{n-1}) \\ &\geq \frac{4}{p} \int_{M} |\tilde{\nabla} (e^{-p(\theta_{s}-\sup_{M}\theta_{s})/2})|^{2} dV_{\tilde{g}} \\ &\geq \frac{4c}{p} \left(\int_{M} e^{-np(\theta_{s}-\sup_{M}\theta_{s})/(n-1)} \, dV_{\tilde{g}} \right)^{(n-1)/n} \\ &- \frac{4C}{p} \int_{M} e^{-p(\theta_{s}-\sup_{M}\theta_{s})} dV_{\tilde{g}}, \end{split}$$

where c is the Sobolev constant, depending only on (M, \tilde{g}) . Using Hölder inequality on the left-handed side of the above, we have

$$\left(\int_{M} e^{-np(\theta_{s}-\sup_{M}\theta_{s})/(n-1)} dV_{\tilde{g}}\right)^{(n-1)/n} \\
\leq Cp\left(\int_{M} e^{-(n+1)p(\theta_{s}-\sup_{M}\theta_{s})/n} dV_{\tilde{g}}\right)^{n/(n+1)} \\
\cdot \left(\left(\int_{M} e^{-(n+1)s\theta_{s}} dV_{\tilde{g}}\right)^{1/n+1} + 1\right).$$

Now $\sup_{M} \theta_{s} \geq 0$, since

$$\operatorname{Vol}_{\tilde{g}}(M) = \int_{M} \omega_{\tilde{g}}^{n} = \int_{M} \omega_{g_{s}}^{n} = \int_{M} e^{\tilde{f} - s\theta_{s}} dV_{\tilde{g}} \ge e^{-s \sup_{M} \theta_{s}} \int_{M} e^{\tilde{f}} dV_{\tilde{g}}$$
$$= e^{-s \sup_{M} \theta_{s}} \operatorname{Vol}_{\tilde{g}}(M).$$

Then

$$(1.9) \qquad \left(\int_{M} e^{-(n+1)\theta_{s}} dV_{\tilde{g}} \right)^{n+1} \leq \left(\int_{M} e^{-(n+1)s(\theta_{s} - \sup_{M} \theta_{s})} dV_{\tilde{g}} \right)^{n+1} < C^{n+1}.$$

Substituting (1.9) into (1.8), we have

$$(1.10) \left| e^{-(\theta_s - \sup_M \theta_s)} \right|_{np/(n-1)} \le C^{1/p} p^{1/p} \left| e^{-(\theta_s - \sup_M \theta_s)} \right|_{(n+1)p/n}.$$

Put $p_0 = ns$ and $p_{m+1} = p_m n^2/(n^2 - 1)$. Then

$$\begin{split} \left| e^{-(\theta_{s} - \sup_{M} \theta_{s})} \right|_{p_{m+1}} &\leq C^{(n/(n-1))(1/p_{m+1})} \left(\frac{n-1}{n} p_{m+1} \right)^{(n/(n-1))/(1/p_{m+1})} \\ & \cdot \left| e^{-(\theta_{s} - \sup_{M} \theta_{s})} \right|_{p_{m}} \\ &\leq (Cp_{m})^{1/p_{m}} \left| e^{-(\theta_{s} - \sup_{M} \theta_{s})} \right|_{p_{m}} \\ & \cdots \\ &\leq C^{1/ns} \sum_{m=0}^{\infty} \left(\frac{n^{2} - 1}{n^{2}} \right)^{m} \left| e^{-(\theta_{s} - \sup_{M} \theta_{s})} \right|_{p_{0}} \\ & \cdot \exp \left(\frac{1}{np} \sum_{m=1}^{\infty} \left(\frac{n^{2} - 1}{n^{2}} \right)^{m} \left(m \log \frac{n^{2}}{n^{2} - 1} + \log(ns) \right) \right) \end{split}$$

 $\leq C$, and it follows that

$$-\inf_{M}(\theta_{s} - \sup_{M} \theta_{s}) = \log \left(\lim_{m \to \infty} \left| e^{-(\theta_{s} - \sup_{M} \theta_{s})} \right|_{p_{m}} \right) \le C,$$

i.e., for $s \in (0, \alpha(M)/(n+2)]$, $\sup_{M} |\theta_s| \le C$.

In the case $s \geq \alpha(M)/(n+2)$, $\operatorname{Ric}(g_s) \geq s \geq \alpha(M)/(n+2)$. Then by Bochner's identity and results of Croke [3] and P. Li [5], we have both the Sobolev inequality and the Poincaré inequality with their constants uniformly bounded on (M, g_s) . Since $-\Delta_s \theta_s \geq -n$, the standard Moser iteration implies that

$$(1.11) -\inf_{M} \theta_{s} \le C \int_{m} (-\theta_{s}) \omega_{g_{s}}^{n} + C,$$

(also see [7] for details).

On the other hand, by Green's formula on (M, \tilde{g}) , it follows that

(1.12)
$$\sup_{M} \theta_{s} \leq \int_{M} \theta_{s} \omega_{\tilde{g}}^{n} + C.$$

By Lemmas 1.3 and 1.2(i),

$$(1.13) I(\theta_s) \le (n+1)(I(\theta_s) - J(\theta_s)) \le (n+1)(I(\theta_t) - J(\theta_t)) \le C.$$

Since $\int_{\{\theta_s>0\}} \theta_s e^{\tilde{f}-s\theta_s} dV_{\tilde{g}}$ and $\int_{\{\theta_s<0\}} (-\theta_s) dV_{\tilde{g}}$ are obviously bounded by a constant C independent of s, the Lemma follows from (1.11)–(1.13) and the definition of $I(\theta_s)$.

Now the closeness of S follows from the above lemma. Hence, $(1.3)_s$ is solvable for $0 \le s \le t$. Then there is a smooth family of $\{\theta_s\}_{0 \le s}$ such that $\theta_t = \phi - \psi$. By Lemma 1.2(ii) and $(1.4)_s$, we have

$$\frac{d}{ds}(I(\theta_s) - J(\theta_s)) = -\frac{1}{\operatorname{Vol}_{\tilde{g}}(M)} \int_M \theta_s(-s\dot{\theta}_s - \theta_s)\omega_g^n,
= -\frac{1}{\operatorname{Vol}_{\tilde{g}}(M)} \frac{d}{ds} \left(\int_M \theta_s \omega_{g_s}^n \right) + \frac{1}{\operatorname{Vol}_{\tilde{g}}(M)} \int_M \dot{\theta}_s \omega_{g_s}^n.$$

Differentiating $\operatorname{Vol}_{\tilde{g}}(M) = \int_{M} e^{\tilde{f} - s\theta_{s}} dV_{\tilde{g}}$ gives

(1.14)
$$\int_{M} (-s\dot{\theta}_{s} - \theta_{s})e^{\tilde{f} - s\theta_{s}} dV_{\tilde{g}} = 0.$$

Hence,

$$\frac{d}{ds}(I(\theta_s) - J(\theta_s)) = \frac{1}{s \operatorname{Vol}_{\tilde{g}}(M)} \frac{d}{ds} \left(s \int_{M} (-\theta_s) e^{\tilde{f} - s\theta_s} dV_{\tilde{g}} \right);$$

i.e.,

(1.15)
$$\frac{d}{ds} (s(I(\theta_s) - J(\theta_s))) - (I(\theta_s) - J(\theta_s))$$

$$= \frac{d}{ds} \left(\frac{s}{\operatorname{Vol}_{\tilde{g}}(M)} \int_M -\theta_s e^{\tilde{f} - s\theta_s} dV_{\tilde{g}} \right).$$

Note that

$$I(\theta_{s}) - J(\theta_{s}) \ge \frac{1}{n+1} I(\theta_{s}) = \frac{1}{(n+1)\operatorname{Vol}_{\tilde{g}}(M)} \int_{M} \theta_{s} (\omega_{\tilde{g}}^{n} - \omega_{g_{s}}^{n})$$

$$= \frac{1}{(n+1)\operatorname{Vol}_{\tilde{g}}(M)} \int_{M} \partial \theta_{s} \wedge \bar{\partial} \theta_{s}$$

$$\wedge (\omega_{\tilde{g}}^{n-1} + \omega_{\tilde{g}}^{n-2} \wedge \omega_{g_{s}} + \dots + \omega_{g_{s}}^{n-1}) \ge 0.$$

Then it follows from (1.15) and Lemma 1.2(i) that

$$(1.16) \qquad \frac{1}{\operatorname{Vol}_{\tilde{g}}(M)} \int_{M} (-\theta_{t}) \omega_{g_{s}}^{n} \leq I(\theta_{t}) - J(\theta_{t}) \leq \frac{n}{n+1} I(\theta_{t})$$

$$= \frac{n}{n+1} \frac{1}{\operatorname{Vol}_{\tilde{g}}(M)} \int_{M} \theta_{t} (\omega_{\tilde{g}}^{n} - \omega_{g_{t}})^{n},$$

i.e.,

$$\begin{split} -\frac{1}{\operatorname{Vol}_{\tilde{g}}(M)} \int_{M} (\phi - \psi) (\omega_{g} + \partial \bar{\partial} \phi)^{n} &\leq \frac{n}{\operatorname{Vol}_{\tilde{g}}(M)} \int_{M} (\phi - \psi) \omega_{\tilde{g}}^{n} \\ &\leq n \sup_{M} (\phi - \psi), \end{split}$$

which is just (0.1). The inequality (0.2) follows from Moser's iteration and the fact that $Ric(g_t) \ge t > 0$. Hence Theorem 1 is proved. (We refer the reader to the proof of Lemma 1.4 for details.)

2. The proof of Corollary 1

From (0.2) in Theorem 1, for any $\psi \in C^2(M, R)$ with $\omega_g + \partial \bar{\partial} \psi \geq 0$ and $\int_M e^{-\psi} \omega_g^n = \operatorname{Vol}_g(M)$, we have

$$(2.1) -\inf_{M}(\phi - \psi) \le n\sup_{M}(\phi - \psi) + C(1),$$

where ϕ is the solution of $(*)_1$ and C(1) is a universal constant. Note that here $f \equiv 0$, since g has been a Kähler-Einstein metric. This implies that $\phi \equiv 0$ is a solution of $(*)_1$. For $\phi = 0$, (2.1) becomes

$$-\inf_{M}(-\psi) \le n\sup_{M}(-\psi) + C(1).$$

Because $\inf_{M}(-\psi) = -\sup_{M}(\psi)$ and $\sup_{M}(-\psi) = -\inf_{M}\psi$, Corollary 1 is proved.

References

- T. Aubin, Réduction du cas positif de l'équation de Monge-Ampère sur les variétés kählériennes compactes à la démonstration d'une inégalité, J. Funct. Anal. 57 (1984) 143-153.
- [2] S. Bando & T. Mabuchi, Uniqueness of Einstein-Kähler metrics modulo connected group actions, Adv. Stud. Pure Math., No. 10, Kinokuniya, Tokyo, and North-Holland, Amsterdam, 1987.

- [3] C. B. Croke, Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci. École Norm. Sup. (4) 13 (1980) 419-435.
- [4] D. Gilbarg & N. S. Trudinger, Elliptic partial differential equations of second order, Springer, Berlin, 1977.
- [5] P. Li, On the Sobolev constant and the p-spectrum a compact Riemannian manifold, Ann. Sci. École Norm. Sup. (4) 13 (1980) 451-469.
- [6] Y. T. Siu, The existence of Kähler-Einstein metric on manifolds with positive anticanonical line bundle and a suitable finite symmetry group, Ann. Math. 127 (1988), 585-627.
- [7] G. Tian, On Kähler-Einstein metrics on certain Kähler manifolds with $C_1(M) > 0$, Invent. Math. 89 (1987), 225–246.
- [8] S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I. Comm. Pure Appl. Math. 31 (1978) 339-411.

UNIVERSITY OF CALIFORNIA AT SAN DIEGO